Determination of parathion in biological fluids by means of direct solid-phase microextraction.
نویسندگان
چکیده
A new and simple procedure for the determination of parathion in human whole blood and urine using direct immersion (DI) solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) is presented. This technique was developed using only 100 microL of sample, and ethion was used as internal standard (IS). A 65-microm Carbowax/divinylbenzene (CW/DVB) SPME fibre was selected for sampling, and the main parameters affecting the SPME process such as extraction temperature, adsorption and desorption time, salt addition, agitation and pH effect were optimized to enhance the sensitivity of the method. This optimization was also performed to allow the qualitative determination of parathion's main metabolite, paraoxon, in blood. The limits of detection and quantitation for parathion were 3 and 10 ng/mL for urine and 25 and 50 ng/mL for blood, respectively. For paraoxon, the limit of detection was 50 ng/mL in blood. The method showed linearity between the LOQ and 50 microg/mL for both matrices, with correlation coefficients ranging from 0.9954 to 0.9999. Precision and accuracy were in conformity with the criteria normally accepted in bioanalytical method validation. The mean absolute recoveries were 35.1% for urine and 6.7% for blood. Other parameters such as dilution of sample and stability were also validated. Its simplicity and the fact that only 100 microL of sample is required to accomplish the analysis make this method useful in forensic toxicology laboratories to determine this compound in intoxications, and it can be considered an alternative to other methods normally used for the determination of this compound in biological media.
منابع مشابه
Determination of Synthetic Phenolic Antioxidants in Biological Fluids Based on Air-assisted Liquid-liquid Microextraction Followed by Gas Chromatography-flame Ionization Detection
An air–assisted liquid–liquid microextraction method for the extraction and preconcentration of trace amounts of some synthetic phenolic antioxidants in biological fluids followed by their determination by gas chromatography–flame ionization detection has been reported. In this method the target analytes are extracted into a few microliters of carbon tetrachloride (extraction solvent) from an a...
متن کاملMicroextraction and Determination of Diclofenac in Biological Samples using Hollow Fiber Liquid Phase Microextraction Technique Coupled with HPLC-UV
In this study, hollow fiber liquid phase microextraction (HF-LPME) coupled with highperformanceliquid chromatography (HPLC) with UV detection was applied for preconcentrationand determination of Diclofenac sodium in biological fluids. Parameters affecting the extractionprocess including pH of donor phase and acceptor phase, type of extraction solvent, stirring rate,extraction time, and salt add...
متن کاملSimultaneous Determination of Parathion, Malathion, Diazinon, and Pirimiphos Methyl in Dried Medicinal Plants Using Solid-Phase Microextraction Fibre Coated with Single-Walled Carbon Nanotubes
A reliable and sensitive headspace solid-phase microextraction gas chromatography-mass spectrometry method for simultaneous determination of different organophosphorus pesticides in dried medicinal plant samples is described. The analytes were extracted by single-walled carbon nanotubes as a new solid-phase microextraction adsorbent. The developed method showed good performance. For diazinon an...
متن کاملHCl- Etched Steel Fiber for Determination of Phthalates in Water Samples by Solid-Phase Microextraction
In the present work, a stainless steel wire was etched by hydrochloric acid during a chemical etching process. The obtained black layer on the surface of the fiber was used as sorbent for extraction of trace amount of phthalates in the aqueous samples by solid phase microextraction. New fiber efficiency was investigated using a home-made solid-phase microextraction (SPME) device and gas chr...
متن کاملComparison of Head Space Solid Phase Microextraction (HS-SPME) and Hydro-distillation (HD) Techniques in Determination of Essential Oils in Fritillaria imperialis
Background: Fritillaria imperialis is an endangered species with pharmaceutical alkaloids that can be effective in reducing blood pressure and reducing cardiac palpitations. Objective: Comparison of head space solid phase microextraction (HS-SPME) and hydro-distillation (HD) techniques in determination of essential oils in Fritillaria imperialis Methods: Quality and quantity determination o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical and bioanalytical chemistry
دوره 386 6 شماره
صفحات -
تاریخ انتشار 2006